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A B S T R A C T

Super-resolution (SR) technology is widely used in embedded devices because it can improve image quality.
However, to achieve improved performance, SR networks usually take a massive memory because of their
large number of parameters. They are not applicable for embedded devices with low power consumption.
In this work, we propose an overlapping back-projection feedback network (LOBFN) for image SR, which
is a lightweight network designed for embedded devices. First, a back-projection feedback block (PFB)
and recursive concatenation are used to learn the hierarchical representations of the network. Second, an
overlapping back-projection suitable for lightweight network is proposed to minimize the reconstruction
errors. Finally, a fusion attention module (FAM) is proposed to perceive information-rich features. The final
experiments proved that the proposed LOBFN significantly improved the SR performance of lightweight
networks.
. Introduction

Nowadays, the design of embedded devices is becoming increasingly
mportant, for embedded devices are increasingly portable and minia-
urized [1,2]. Low power consumption design of embedded systems
s an issue that designers have to face, for embedded devices do not
lways have sufficient power supply [3,4]. The capabilities of embed-
ed devices are enhanced with the help of artificial intelligent (AI) and
ig data. SR networks based on deep learning has attracted academic
ttention recently, and it is the best SR method at present. The single
mage super-resolution (SISR) aims at learning the hierarchical repre-
entations of low-resolution (LR) image data to restore high-resolution
HR) image, which is the focus of academic research at present. This
aper focuses on the SISR network suitable for embedded devices with
ow power consumption.

The SISR has made great progress since the introduction of deep
earning [5], and then many super-resolution methods have been pro-
osed [6–15]. Thereafter, FSRCNN [7] was proposed to improve SR-
NN [5], which up-sampled LR features using deconvolution on the last

ayer to reduce calculation amount. ESPCN [16] introduced sub-pixel
onvolution to up-sample LR features and reduce redundancy. Lai et al.
rogressively reconstructed HR images in LapSRN [12].

Many methods [17,18] have shown that deeper network is more ex-
ressive, but the training of deep networks is unstable. VDSR [19] is the
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first deep SR network, which introduced residual learning to train deep
SR network. Thereafter, ResNet [20] connected the layers by residual
learning to enhance the gradient flow and reduce the degradation of
the network. Then many methods [11,13,21] based on residual learning
were proposed. However, deeper networks produce more parameters,
which lead to more memory usage. Subsequently, recursive convolu-
tional networks were proposed, such as the DRCN [22] and DRRN [23].
Then recursive fusion technique was used in the EBRN [24], which
extracted features of different frequencies through different network
depths and integrated them recursively. The recursive convolutional
layers of these networks shared the same weights, so the networks can
be deepened without increasing the number of parameters. Inspired by
RNN, SRFBN [8] is proposed as a feedback network. DBPN [10] used
error feedback to correct features in back-projection units.

The channel attention mechanism allows the network to perceive
information-rich channels with very few parameters. It was initially
proposed for image classification tasks, such as the SE module proposed
by Hu et al. [25]. Then, the residual channel attention blocks (RCABs)
for image SR was proposed in RCAN [6], which rescaled the features
adaptively by considering the interdependent relationships between
channels. Woo et al. proposed the channel and spatial attention using
vailable online 27 January 2023
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Fig. 1. The proposed LOBFN.

Fig. 2. PSNR (dB) vs. number of parameters (𝐾 = 103) with scaling factor of x3 on
Set5 dataset.

both maximum and average-pooling in CBAM [26]. Then contrast-
aware channel attention (CCA) module using both standard deviation
and average-pooling was putforward in IMDN [27].

Since embedded devices are usually resource-constrained,
lightweight applications with less parameters is getting increasingly
important. Therefore, a lightweight feedback network via overlapping
back-projection (LOBFN) is proposed, as shown in Fig. 1, which is
inspired by SRFBN-S [8]. Our LOBFN is applicable for embedded
devices with low power consumption, because the feedback mechanism
and the overlapping back-projection units can reduce the required
parameters and calculations. The PFB blocks of all iterations share the
same weights as a feedback block, and the overlapping back-projection
units reuse the operations and parameters from the previous projection
unit. The proposed LOBFN has an outstanding performance compared
with other classical methods, as shown in Fig. 2.

Our contributions are as follows:

• To efficiently learn the hierarchical representations of the net-
work, we use a feedback block to enhance the low-level rep-
resentations, and use recursive concatenation to enhance the
high-level representations. The feedback block can reduce the
required parameters by sharing the same weights.

• To minimize the reconstruction errors efficiently, an overlap-
ping back-projection suitable for lightweight networks is pro-
posed. The projection errors are learned and fed back to correct
intermediate features.

• To perceive information-rich features, a fusion attention module
(FAM) is proposed. We argue that standard deviation, average-
and max-pooling are all beneficial to learn information-rich fea-
tures, so we fuse them to enhance feature expression ability of the
network.

2. Method or methodology

In this section, the unfolded LOBFN is introduced in first. Then,
the proposed overlapping back-projection groups (OBGs) and fusion
attention module (FAM) in PFB are analyzed in detail.
2

2.1. Architecture of LOBFN

As shown in Fig. 3, we reconstruct SR images at the same scaling
factor by 𝑇 iterations (iteration 𝑡 ∈ (1,… , 𝑇 )), and take 𝑆𝑅𝑇 as the SR
result of LOBFN. The LOBFN can be divided into three parts: LR feature
extraction part, feedback part and reconstruction part.

We define 𝐹𝑖𝑛 as the output of the first part, and it is one of the
inputs of PFB. In the 1st iteration, PFB takes 𝐹𝑖𝑛 as input. While in the
other iterations, the input of PFB is the concatenation of 𝐹𝑖𝑛 and the
output of itself from last iteration 𝐹 𝑡−1

𝑜𝑢𝑡 . Therefore, the output of PFB at
the 𝑡𝑡ℎ iteration can be obtained by:

𝐹 𝑡
𝑜𝑢𝑡 =

{

𝑓𝑃𝐹𝐵(𝐹𝑖𝑛)

𝑓𝑃𝐹𝐵([𝐹𝑖𝑛, 𝐹
𝑡−1
𝑜𝑢𝑡 ])

𝑡 = 1
𝑡 ≥ 2

}

, (1)

where 𝑓𝑃𝐹𝐵 denotes the PFB operations. [] denotes the concatenation
operation.

Reconstruction part contains a deconvolutional up-sampling layer
and a convolutional layer for channel compression. In the 𝑡𝑡ℎ iteration,
as the output of deconvolutional layer, 𝐹 𝑡

𝑟𝑏 can be obtained by:

𝐹 𝑡
𝑟𝑏 = 𝑓𝑈𝑃 (𝐹 𝑡

𝑜𝑢𝑡), (2)

where 𝑓𝑈𝑃 denotes the operation of the deconvolutional layer.
Finally, as the SR result of the 𝑡𝑡ℎ iteration, 𝑆𝑅𝑡 can be obtained by:

𝑆𝑅𝑡 =
{

𝑓𝑐 (𝐹 𝑡
𝑟𝑏) + 𝑓𝐵𝐼 (𝐿𝑅)

𝑓𝑐 ([𝐹 𝑡
𝑟𝑏, 𝐹

𝑡−1
𝑟𝑏 ,… , 𝐹 1

𝑟𝑏]) + 𝑓𝐵𝐼 (𝐿𝑅)
𝑡 = 1
𝑡 ≥ 2

}

, (3)

where 𝑓𝑐 denotes the convolution operation to compress feature chan-
nels for image reconstruction. 𝑓𝐵𝐼 denotes the operation of bilinear
up-sampling operation.

2.2. Back-projection feedback block (PFB)

PFB is a feedback block, which feeds the output back to itself.
As shown in Fig. 3, the PFB contains two parts: overlapping back-
projection groups (OBGs) and fusion attention module (FAM). OBGs
correct the intermediate features using error feedback, and FAM dis-
tributes different attention weights to features. The iteration of OBGs
and FAM efficiently improved the expression ability of features.

2.2.1. Overlapping back-projection groups (OBGs)
Inspired by D-DBPN [10], we propose an overlapping

back-projection. For better understanding, the proposed overlapping
back-projection units are compared with the back-projection stages
proposed in D-DBPN [10], as shown in Fig. 4. In D-DBPN [10], the two
back-projection units are independent, but in our method, the two back-
projection units overlap each other. Every projection unit except the
first one, reuses the up-/down-sampling operation and parameters from
the previous projection unit. In this ways, we reduced the calculation
amount and parameters required for the back-projection units, making
it suitable for lightweight networks.

Based on the proposed overlapping back-projection units, the struc-
ture of OBGs is described in detail in Fig. 5. OBGs contains G up-
projection units, and the group g is from 1 to G. We define 𝑓𝑐𝑖𝑛 as the
convolution operation for compressing the channels of input features.
The input features 𝐿0 can be obtained by:

𝐿𝑡
0 =

{

𝑓𝑐𝑖𝑛(𝐹𝑖𝑛)
𝑓𝑐𝑖𝑛([𝐹𝑖𝑛, 𝐹 𝑡−1

𝑜𝑢𝑡 ])
𝑡 = 1
𝑡 ≥ 2

}

. (4)

We define 𝑓𝑈𝑃 and 𝑓𝐷𝑂𝑊𝑁 as the up-sampling and down-sampling
operations in overlapping back-projection groups. In the 𝑡𝑡ℎ iteration,
we define 𝐻 𝑡

𝑔 and 𝐿𝑡
𝑔 as the intermediate HR and LR features of the

g-th up-projection unit, 𝑁𝐻 𝑡
𝑔 and 𝑁𝐿𝑡

𝑔 as the error-corrected 𝐻 𝑡
𝑔 and

𝐿𝑡
𝑔 . They can be obtained by:

𝐻 𝑡
𝑔 =

{

𝑓𝑈𝑃 ([𝐿𝑡
0,… ., 𝐿𝑡

𝑔−1])
𝑡 𝑡 𝑡 𝑡

𝑔 ≤ 2
}

, (5)

𝑓𝑈𝑃 ([𝐿0, 𝑁𝐿1,… ., 𝑁𝐿𝑔−2, 𝐿𝑔−1]) 𝑔 ≥ 3
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Fig. 3. The unfolded LOBFN.

Fig. 4. The comparison of the back-projection proposed in D-DBPN [10] and our overlapping back-projection. The light colored up-/down-sampling blocks represent the reusage
of operations and parameters from the previous back-projection unit. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 5. The unfolded OBGs.
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Fig. 6. Fusion attention module (FAM).
Fig. 7. The network architecture after the ablation of recursive concatenation.
Fig. 8. Projection groups in SRFBN [8].
𝐿𝑡
𝑔 =

{

𝑓𝐷𝑜𝑤𝑛(𝐻 𝑡
𝑔)

𝑓𝐷𝑜𝑤𝑛([𝑁𝐻 𝑡
1,… ., 𝑁𝐻 𝑡

𝑔−1,𝐻
𝑡
𝑔])

𝑔 = 1
𝑔 ≥ 2

}

, (6)

𝑁𝐻 𝑡
𝑔 =

{

𝐻 𝑡
𝑔 + 𝑓𝑈𝑃 (𝐿𝑡

𝑔 − 𝐿𝑡
𝑔−1)

𝐻 𝑡
𝑔 + 𝑓𝑈𝑃 (𝐿𝑡

𝑔 −𝑁𝐿𝑡
𝑔−1)

𝑔 = 1
𝑔 ≥ 2

}

, (7)

𝑁𝐿𝑡
𝑔 = 𝐿𝑡

𝑔 + 𝑓𝐷𝑂𝑊𝑁 (𝐻 𝑡
𝑔+1 −𝑁𝐻 𝑡

𝑔) 𝑔 ≥ 1 . (8)

Finally, 𝐹 𝑡
𝐺, as the output OBGs, can be obtained by:

𝐹 𝑡
𝐺 = 𝑓𝑐𝑜𝑢𝑡([𝑁𝐿𝑡

1,… .., 𝑁𝐿𝑡
𝐺−1, 𝐿

𝑡
𝐺]), (9)

where 𝑓𝑐𝑜𝑢𝑡 is the convolutional operation for compressing the output
feature channels.
4

2.2.2. Fusion attention module (FAM)

The network with attention module can concentrate on information-
rich features. In previous networks [6,25,26], average/max-pooling
were widely used in attention module, for they can obtain information
about distinctive objects to enhance image details. However, we argue
that the standard deviation can obtain the information of textures,
structures, and edges, so the features with large standard deviation
are information-rich and should receive more attention. The standard
deviation, average and maximum pooling are used to calculate channel
and spatial attention, so our FAM contains two components: fusion
channel attention (FCA) and fusion spatial attention (FSA). Furtherly, to
enhance the gradient flow, we use residual learning in FAM, as shown
in Fig. 6.
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Fig. 9. Independent back-projection groups in D-DBPN [10].

We use FCA and FSA to improve the performance of PFB, and define
the features after FCA as 𝐹 𝑡

𝑓𝑐𝑎, which can be obtained by:

𝐹 𝑡
𝑓𝑐𝑎 = 𝐹 𝑡

𝐺∗𝜎(𝑓𝑚𝑙𝑝(𝑓
𝑐
𝑠𝑡𝑑 (𝐹

𝑡
𝐺)) + 𝑓𝑚𝑙𝑝(𝑓 𝑐

𝑎𝑣𝑔𝑝(𝐹
𝑡
𝐺)) + 𝑓𝑚𝑙𝑝(𝑓 𝑐

𝑚𝑎𝑥𝑝(𝐹
𝑡
𝐺)))

+ 𝐹 𝑡
𝐺 ,

(10)

where 𝑓 𝑐
𝑠𝑡𝑑 , 𝑓 𝑐

𝑎𝑣𝑔𝑝 and 𝑓 𝑐
𝑚𝑎𝑥𝑝 are the standard deviation, average- and

max-pooling operations of each channel. 𝑓𝑚𝑙𝑝 is the operation of con-
relu-conv. 𝜎 is the sigmoid function.

Finally, in the 𝑡𝑡ℎ iteration, the output features of PFB can be
obtained by:

𝐹 𝑡
𝑜𝑢𝑡 = 𝐹 𝑡

𝑓𝑐𝑎 ∗ 𝜎(𝑓 7×7(𝑓 s
𝑠𝑡𝑑 (𝐹

𝑡
𝑓𝑐𝑎) + 𝑓 s

𝑎𝑣𝑔𝑝(𝐹
𝑡
𝑓𝑐𝑎) + 𝑓 s

𝑚𝑎𝑥𝑝(𝐹
𝑡
𝑓𝑐𝑎)))

+ 𝐹 𝑡
𝑓𝑐𝑎,

(11)

where 𝑓 𝑠
𝑠𝑡𝑑 , 𝑓 𝑠

𝑎𝑣𝑔𝑝 and 𝑓 𝑠
𝑚𝑎𝑥𝑝 are the operations of pixels in the same spa-

tial location along the channel dimension. 𝑓 7×7 is a conv-7 operation.

2.3. Loss function

We choose the L1 loss function and use the average loss values of 𝑇
iterations to supervise the training of the LOBFN, so our loss function
can be obtained by:

𝐿𝑜𝑠𝑠 = 1
𝑇

𝑇
∑

𝑡=1
𝐿1(𝑆𝑅𝑡,𝐻𝑅). (12)

3. Experimental results

3.1. Experimental details

We use DIV2K [28] dataset as the training set, and expand the num-
ber to 8000 by rotating and cropping the images. The LR images are
generated by the bicubic down-sampling. We use the Adam optimizer
and PyTorch framework. We set learning rate lr = 0.0005, and halved
it every 200 epochs. The SR result of the last iteration is tested on the
Set5, Set14, BSD100, Urban100 and Manga109 datasets. In this paper,
we implement three models: LOBFN-S (T = 4,G = 2), LOBFN (T = 4,G
= 3) and LOBFN-L (T = 4,G = 4).

3.2. Comparison with the baseline

The LOBFN we proposed is based on SRFBN-S [8]. To prove the
improvements of our method, we compare our LOBFN-S with SRFBN-
S [8], and they have almost the same number of parameters. The
comparison results of them are shown in Table 1. LOBFN-S has a
better performance than SRFBN-S [8], which proved our improvement.
This is because we improved the feedback block using overlapping
back-projection and fusion attention module, and we used recursive
concatenation for SR images reconstruction.
5

3.3. Ablation study of the recursive concatenation

We use recursive concatenation for SR image reconstruction. It can
be degenerated to the multi-reconstruction method used in SRFBN-
S [8], if we remove the recursive concatenation, as shown in Fig. 7. To
validate the efficiency of our recursive concatenation, we make a com-
parison as shown in Table 2, which demonstrate that the recursive con-
catenation operation is beneficial for improving the performance of the
network. This is because recursive concatenation enhanced high-level
representations of the HR features for SR reconstruction.

3.4. The effectiveness of overlapping back-projection

The overlapping back-projection groups (OBGs) can degenerate to
the projection groups used in SRFBN-S [8], if we remove the error
feedback, as shown in Fig. 8. We set G = 5 for the projection groups,
which has almost the same number of parameters with LOBFN. Fur-
therly, we compare OBGs with the independent back-projection groups
proposed in D-DBPN [10], as shown in Fig. 9. We compare them
with our overlapping back-projection, as shown in Table 3. The results
demonstrate that the overlapping back-projection groups are beneficial
for improving the performance of the network. This is because the error
feedback can better guide the SR reconstruction, and the overlapping
between them can learn the intermediate features more fully.

3.5. The effectiveness of FAM

We propose a fusion attention module (FAM) used after the pro-
jection groups in PFB, which are not used in SRFBN [8]. First, we
remove it to validate the efficiency of FAM. Second, we change the
order of FCA and FSA in FAM to obtain a better combining strategy.
Finally, we compare our FAM with CBAM [26], which used max- and
average-pooling to calculate channel and spacial attention, as shown in
Fig. 10.

In Table 4, the comparison results demonstrate that the FAM module
is beneficial for improving the performance of the network. This is
because attention module enables the network to perceive information-
rich features. Then, FCA + FSA has a better performance, so we use
FCA + FSA in FAM. At last, FAM is better than CBAM [26], because
the standard deviation of pixels in FAM helps to recover image details
related to structures and textures.

3.6. Comparison with the classical lightweight SR methods

In this paper, we implement three models: LOBFN-S, LOBFN and
LOBFN-L, among which LOBFN-L performs best. In Table 5, our meth-
ods are compared with the classical lightweight SR methods: the SR-
CNN [5], FSRCNN [7], VDSR [19], LapSRN [12], DRRN [23], Mem-
Net [29], IDN [30], EDSR-baseline [13], SRMDNF [31], CARN [32]
and IMDN [27]. The PSNR value of our LOBFN is not better than that
of IMDN [27] at scaling factors of ×2, but the parameters of LOBFN
are less than that of IMDN [27]. For 3×SR, the parameters of LOBFN
are less than that of IMDN [27], but the PSNR values of our LOBFN
are better than that of IMDN [27]. Therefore, our methods achieve
outstanding performance, especially on large scaling factors.

The comparisons of the SR images with scaling factors of ×4 are
visually shown in Fig. 11, which demonstrate that our methods can
better recover the detailed features. This proves the efficiency of the
proposed LOBFN.
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Table 1
Comparison of SRFBN-S [8] and LOBFN.

Methods Scale Params Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

SRFBN-S [8]
×2 282k 37.78/0.9597 33.35/0.9156 32.00/0.8970 31.41/0.9207 38.06/0.9757

LOBFN-S 283k 37.86/0.9601 33.46/0.9165 32.06/0.8983 31.71/0.9241 38.20/0.9762

SRFBN-S [8]
×3 376k 34.20/0.9255 30.10/0.8372 28.96/0.8010 27.66/0.8415 33.02/0.9404

LOBFN-S 376k 34.34/0.9266 30.29/0.8416 29.04/0.8037 27.98/0.8487 33.45/0.9436

SRFBN-S [8]
×4 483k 31.98/0.8923 28.45/0.7779 27.44/0.7313 25.71/0.7719 29.91/0.9008

LOBFN-S 484k 32.11/0.8942 28.54/0.7814 27.52/0.7349 25.94/0.7807 30.40/0.9075
Table 2
Ablation study of recursive concatenation.

Recursive concatenation Scale Params Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

#
×4 746k 32.20/0.8954 28.58/0.7820 27.57/0.7360 26.10/0.7864 30.62/0.9095

! 753k 32.23/0.8955 28.62/0.7829 27.57/0.7362 26.11/0.7865 30.66/0.9103
Table 3
Comparison of projection groups, the independent back-projection groups and our overlapping back-projection groups.

Projection manner Scale Params Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Projection
×3

605k 34.45/0.9274 30.39/0.8433 29.10/0.8053 28.23/0.8542 33.67/0.9451
Independent back-projection 573k 34.40/0.9270 30.35/0.8426 29.07/0.8045 28.21/0.8516 33.51/0.9442
Overlapping back-projection 585k 34.47/0.9276 30.40/0.8433 29.10/0.8054 28.21/0.8537 33.70/0.9452
Fig. 10. The attention module of CBAM [26].
Table 4
The effectiveness the FAM module in OBGs.

Attention module Scale Params Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

None

×3

584k 34.42/0.9271 30.39/0.8429 29.09/0.8047 28.20/0.8531 33.64/0.9447
FCA + FSA 585k 34.47/0.9276 30.40/0.8433 29.10/0.8054 28.21/0.8537 33.70/0.9452
FSA + FCA 585k 34.44/0.9272 30.39/0.8430 29.09/0.8049 28.23/0.8539 33.59/0.9448
CBAM [26] 584k 34.45/0.9274 30.37/0.8427 29.09/0.8049 28.19/0.8533 33.56/0.9446
4. Conclusion

In this paper, we propose an overlapping back-projection feedback
network to achieve lightweight image super-resolution (LOBFN). We
use a feedback block PFB and recursive concatenation to learn the
hierarchical features of the network. In PFB, we propose an over-
lapping back-projection mechanism to minimize the reconstruction
errors. Finally, we propose a fusion attention module(FAM) to perceive
information-rich features. The final experiments demonstrate the su-
periorities of the proposed LOBFN. All the motivations we proposed
are efficient and require few parameters, so it is suitable for embedded
devices with low power consumption.
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Fig. 11. Visual comparisons of LOBFN with other SR methods on Set14, Urban100 and BSD100 datasets.
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Table 5
Comparison of the average PSNRs/SSIMs for different scale factors on the five benchmark datasets. Red represents the best results and blue
represents the second-best results.

Methods Scale Params Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic

×2

– 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339
SRCNN [5] 8k 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663
FSRCN [7] 13k 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020 36.67/0.9710
VDSR [19] 666k 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9750
LapSRN [12] 251k 37.52/0.9591 32.99/0.9124 31.80/0.8952 30.41/0.9103 37.27/0.9740
DRRN [23] 298k 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188 37.88/0.9749
MemNet [29] 678k 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 37.72/0.9740
IDN [30] 553k 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196 38.01/0.9749
EDSR-baseline [13] 1370k 37.99/0.9604 33.57/0.9175 32.16/0.8994 31.98/0.9272 38.54/0.9769
SRMDNF [31] 1511k 37.79/0.9601 33.32/0.9159 32.05/0.8985 31.33/0.9204 38.07/0.9761
CARN [32] 1592k 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765
IMDN [27] 694k 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774
LOBFN-S (Ours) 283k 37.86/0.9601 33.46/0.9165 32.06/0.8983 31.71/0.9241 38.20/0.9762
LOBFN (Ours) 438k 37.94/0.9602 33.57/0.9172 32.12/0.8988 31.95/0.9265 38.36/0.9765
LOBFN-L (Ours) 595k 37.99/0.9604 33.64/0.9180 32.15/0.8990 32.10/0.9283 38.44/0.9765

Bicubic

×3

– 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556
SRCNN [5] 8k 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117
FSRCN [7] 13k 33.18/0.9140 29.37/0.8240 28.53/0.7910 26.43/0.8080 31.10/0.9210
VDSR [19] 666k 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9340
LapSRN [12] 502k 33.81/0.9220 29.79/0.8325 28.82/0.7980 27.07/0.8275 32.21/0.9350
DRRN [23] 298k 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 32.71/0.9379
MemNet [29] 678k 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376 32.51/0.9369
IDN [30] 553k 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 32.71/0.9381
EDSR-baseline [13] 1555k 34.37/0.9270 30.28/0.8417 29.09/0.8052 28.15/0.8527 33.45/0.9439
SRMDNF [31] 1528k 34.12/0.9254 30.04/0.8382 28.97/0.8025 27.57/0.8398 33.00/0.9403
CARN [32] 1592k 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.50/0.9440
IMDN [27] 703k 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445
LOBFN-S (Ours) 376k 34.34/0.9266 30.29/0.8416 29.04/0.8037 27.98/0.8487 33.45/0.9436
LOBFN (Ours) 585k 34.47/0.9276 30.40/0.8433 29.10/0.8054 28.21/0.8537 33.70/0.9452
LOBFN-L (Ours) 795k 34.53/0.9281 30.44/0.8442 29.12/0.8059 28.33/0.8562 33.80/0.9459

Bicubic

×4

– 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866
SRCNN [5] 8k 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555
FSRCN [7] 13k 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280 27.90/0.8610
VDSR [19] 666k 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8870
LapSRN [12] 502k 31.54/0.8852 28.09/0.7700 27.32/0.7275 25.21/0.7562 29.09/0.8900
DRRN [23] 298k 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 29.45/0.8946
MemNet [29] 678k 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942
IDN [30] 553k 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 29.41/0.8942
EDSR-baseline [13] 1518k 32.09/0.8938 28.58/0.7813 27.57/0.7357 26.04/0.7849 30.35/0.9067
SRMDNF [31] 1552k 31.96/0.8925 28.35/0.7787 27.49/0.7337 25.68/0.7731 30.09/0.9024
CARN [32] 1592k 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.47/0.9084
IMDN [27] 715k 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075
LOBFN-S (Ours) 484k 32.11/0.8942 28.54/0.7814 27.52/0.7349 25.94/0.7807 30.40/0.9075
LOBFN (Ours) 753k 32.23/0.8955 28.62/0.7829 27.57/0.7362 26.11/0.7865 30.66/0.9103
LOBFN-L (Ours) 1025k 32.27/0.8960 28.69/0.7840 27.62/0.7375 26.29/0.7916 30.77/0.9116
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